4#include <glm/ext/matrix_clip_space.hpp>
5#include <glm/ext/matrix_transform.hpp>
7#include <glm/gtc/matrix_inverse.hpp>
8#include <glm/gtc/quaternion.hpp>
9#include <glm/gtc/type_ptr.hpp>
10#include <glm/gtx/euler_angles.hpp>
11#include <glm/gtx/matrix_interpolation.hpp>
12#include <glm/gtx/norm.hpp>
13#include <glm/gtx/transform.hpp>
20using std::numbers::e_v;
21using std::numbers::egamma_v;
22using std::numbers::inv_pi_v;
23using std::numbers::inv_sqrt3_v;
24using std::numbers::inv_sqrtpi_v;
25using std::numbers::ln10_v;
26using std::numbers::ln2_v;
27using std::numbers::log10e_v;
28using std::numbers::log2e_v;
29using std::numbers::phi_v;
30using std::numbers::pi_v;
31using std::numbers::sqrt2_v;
32using std::numbers::sqrt3_v;
34inline constexpr float e = e_v<float>;
35inline constexpr float log2e = log2e_v<float>;
36inline constexpr float log10e = log10e_v<float>;
37inline constexpr float pi = pi_v<float>;
38inline constexpr float inv_pi = inv_pi_v<float>;
40inline constexpr float ln2 = ln2_v<float>;
41inline constexpr float ln10 = ln10_v<float>;
42inline constexpr float sqrt2 = sqrt2_v<float>;
43inline constexpr float sqrt3 = sqrt3_v<float>;
44inline constexpr float inv_sqrt3 = inv_sqrt3_v<float>;
45inline constexpr float egamma = egamma_v<float>;
46inline constexpr float phi = phi_v<float>;
89using glm::interpolate;
91using glm::inverseTranspose;
110using glm::orientate2;
111using glm::orientate3;
112using glm::orientate4;
114using glm::perspective;
constexpr float ln2
Definition math.hpp:40
constexpr float phi
Definition math.hpp:46
constexpr float inv_sqrt3
Definition math.hpp:44
constexpr float sqrt3
Definition math.hpp:43
constexpr float ln10
Definition math.hpp:41
constexpr float inv_pi
Definition math.hpp:38
constexpr float log2e
Definition math.hpp:35
constexpr float pi
Definition math.hpp:37
constexpr float egamma
Definition math.hpp:45
constexpr float log10e
Definition math.hpp:36
constexpr float e
Definition math.hpp:34
constexpr float inv_sqrtpi
Definition math.hpp:39
constexpr float sqrt2
Definition math.hpp:42
Definition Application.hpp:9